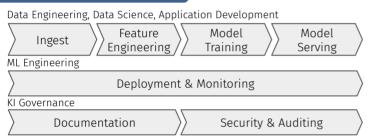
MLOps: A process or a platform?


The most important criteria for efficient and effective MLOps

MLOps defined

From one perspective, MLOps covers all processes in the context of AI governance. On the other hand, MLOps serves as a tool for data scientists, software developers, DevOps and platform engineers to efficiently create and sustainably operate AI solutions. **MLOps as a process** defines the steps, results and quality points such as traceability, transparency, repeatability and documentation.

MLOps as a platform provides efficient technical means and all functions to optimally support each role in its individual competence and responsibility as well as in collaboration.

MLOps as a Process

MLOps defines standardized, efficient processes over the entire life cycle of an ML system, from data procurement to the construction of models and their operation (serving). Supporting processes for deployment, security and monitoring must be fully integrated for MLOps to be effective. This requires a wide range of skills and IT expertise - a key reason the implementation of MLOps from scratch, lacking a specialized platform, is considered very complex.

MLOps as a Platform

omega-ml meets all the requirements of a modern, efficient and future-proof MLOps implementation. This includes all the functions that powerful data science and DevOps teams need in practice:

- → Repository as a central database for all models, data, scripts and pipelines
- → Metadata form the backbone of the repository and enable control of all data sources, artifacts and documentation
- → Tracking Automatically records model training (experiments) and productive execution (predictions), enabling monitoring and assessing data and model drift
- → Runtime executes pipelines, models and customized services in a scalable, controlled and secure manner, online or in batch processing.

MLOps = DevOps for AI?

MLOps is often characterized as "DevOps for AI", but there are significant differences. This is why a typical DevOps approach is considered inadequate for MLOps purpose.

Aspect	DevOps	MLOps
Deployment artifacts	Executable code, infrastructure (IaC)	ML models, data, pipelines (Code/conf.)
Basis for quality assurance	Functional and integration tests, anonymized test data, test system	Historic and current productive data, live system
Compute Capacity	Mainly in production	Mainly during training & development
Deployment Type	Self-contained (singular unit)	Additive (existing platform)
Monitoring	System Performance	Data Quality Model Performance

Checklist

Functional Requirements

omega-ml

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \mathbf{V}

Process coverage as a self-service
 Data ingestion, feature Engineering, model training,

model serving (no DevOps skills required)

- MLOps infrastructure
 Repository for models, data, pipelines & scripts,, tracking & drift-monitoring. Runtime for online and batch services, model serving, plugin extensibility
- Data access and storage SQL DB, NoSQL, Streaming (e.g. Kafka), REST API
- Model Serving, App Serving
 Standard Model REST API, Customized Service
 Endpoints (OpenAPI/Swagger), Apps & Dashboards
- Experiments, Monitoring and Drift Detection Automated and explicit recording of metrics, parameters, versioning of models and data, in development and production

Non-Functional Requirements

□ Security

Integration with Identity Providers (IDP), data and platform security, opt. secure computing nodes

IT Integration

Windows (Client), Linux (Client/Server), Bare Metal, Kubernetes, Cloud, On-/Off-Premises

Scalability

Dynamic scaling of the runtime and extensibility by data scientist-provided packages

Deployment and Maintainability
 Deployment of models, data and scripts
 Is fully automated and integrated with CICD